Optimizing Terrestrial Laser Scanning Measurement Set-up

نویسنده

  • Sylvie Soudarissanane
چکیده

One of the main applications of the terrestrial laser scanner is the visualization, modeling and monitoring of man-made structures like buildings. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also need observations with a known and well described quality. To obtain a 3D point cloud, the scene is scanned from different positions around the considered object. The scanning geometry plays an important role in the quality of the resulting point cloud. The ideal set-up for scanning a surface of an object is to position the laser scanner in such a way that the laser beam is near perpendicular to the surface. Due to scanning conditions, such an ideal set-up is in practice not possible. The different incidence angles and ranges of the laser beam on the surface result in 3D points of varying quality. The stand-point of the scanner that gives the best accuracy is generally not known. Using an optimal stand-point of the laser scanner on a scene will improve the quality of individual point measurements and results in a more uniform registered point cloud. The design of an optimum measurement setup is defined such that the optimum stand-points are identified to fulfill predefined quality requirements and to ensure a complete spatial coverage. The additional incidence angle and range constraints on the visibility from a view point ensure that individual scans are not affected by bad scanning geometry effects. A complex and large room that would normally require five view point to be fully covered, would require nineteen view points to obtain full coverage under the range and incidence angle constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing the Error in Terrestrial Laser Scanning by Optimizing the Measurement Set-up

High spatial resolution and fast capturing possibilities make 3D terrestrial laser scanners widely used in engineering applications and cultural heritage recording. Phase based laser scanners can measure distances to object surfaces with a precision in the order of a few millimeters at ranges between 1 and 80 m. However, the quality of a laser scanner end-product, like a 3D model, is influenced...

متن کامل

Tree Height Growth Measurement with Single-Scan Airborne, Static Terrestrial and Mobile Laser Scanning

This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: "Can the new technique characterize the height growth for each individual tree?" and "Can ...

متن کامل

Occlusion Area as Suitable Guidance for Terrestrial Laser Scanner Localization

Terrestrial Laser Scanner (TLS) technology, have altered quickly data acquisition for map production in surveying. In many cases, it is impossible to complete surveying of the desired area without TLS displacement in one station to another. Occlusion is innate in data acquisition, with this type of device. To solve this problem, TLS devices should be placed in different locations and scanning o...

متن کامل

Maintainingmomentum in Terrestrial Laser Scanning: a Uk Case Study

Terrestrial laser scanning has been rapidly adopted around the world as a tool for capturing three-dimensional survey data in a variety of applications. This rapid take up continues, but clients, and therefore data providers, are becoming increasingly interested in ensuring that data is fit for purpose and provides value for money. Specific professional guidance is required in response to this ...

متن کامل

Terrestrial laser scanning for snow depth observations: An update on technical developments and applications

In the past few years terrestrial laser scanning methodology has become a powerful tool for determining the spatial snow depth distribution on slopes. With technical improvements of devices, e.g. increased measurement range, reduced beam diameter, increased scanning speed and a more precise registration process, application for snow and avalanche related objectives has increased. The presentati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011